一个定积分的问题
声明,由于定积分打不出来,我口述成如:0到2上的积分+表达式的形式f(x)在[0,+∞)上二阶连续可导,且f(2)=1,f'(2)=0,0到2上的积分f(x)dx=4.求...
声明,由于定积分打不出来,我口述成如:0到2上的积分+表达式的形式
f(x)在[0,+∞)上二阶连续可导,且f(2)=1, f'(2)=0, 0到2上的积分f(x)dx=4.
求 0到1上的积分[x^2f''(2x)dx]
这里先谢谢解答了!! 展开
f(x)在[0,+∞)上二阶连续可导,且f(2)=1, f'(2)=0, 0到2上的积分f(x)dx=4.
求 0到1上的积分[x^2f''(2x)dx]
这里先谢谢解答了!! 展开
2个回答
展开全部
let
g(x) = x^2f(x)
g'(x) = 2xf(x) + x^2f'(x)
g''(x) = 2f(x) + 2xf'(x) + x^2f''(x) + 2xf'(x)
= 2f(x) + 4xf'(x) + x^2f''(x)
∫x^2f''(x)dx = ∫g''(x)dx - 2∫f(x)dx - 4∫xf'(x)dx (0到2)
∫g''(x)dx (0到2)
= g'(2) - g'(0)
= 4f(2)+ 4f'(2) - 0 (g'(0)=0)
= 4 + 4(0) = 4
also
-2∫f(x)dx (0到2)
= -2(4) = -8
also
- 4∫xf'(x)dx (0到2)
let
h(x) = xf(x)
h'(x) = xf'(x) + f(x)
∫xf'(x)dx = ∫h'(x) dx -∫f(x)dx (0到2)
consider
∫h'(x) dx (0到2)
=h(2)- h(0)
=2f(2) - 0
=2(1) = 2
-∫f(x)dx (0到2)
= -4
- 4∫xf'(x)dx (0到2)
= -4(-2) = 8
∫x^2f''(x)dx = ∫g''(x)dx - 2∫f(x)dx - 4∫xf'(x)dx (0到2)
= 4 -8 + 8 = 4 (1)
I=∫x^2f''(x)dx (0到2)
let 2y = x
2dy = dx
x=0 , y=0
x=2, y=1
I=∫x^2f''(x)dx (0到2)
= ∫4y^2f''(2y)2dy (0到1)
= 8∫y^2f''(2y)dy (0到1)
= 8∫x^2f''(2x)dx (0到1)
from (1)
∫x^2f''(x)dx (0到2)
= 4
8∫x^2f''(2x)dx (0到1)
=4
∫x^2f''(2x)dx (0到1)
= 1/2 #
g(x) = x^2f(x)
g'(x) = 2xf(x) + x^2f'(x)
g''(x) = 2f(x) + 2xf'(x) + x^2f''(x) + 2xf'(x)
= 2f(x) + 4xf'(x) + x^2f''(x)
∫x^2f''(x)dx = ∫g''(x)dx - 2∫f(x)dx - 4∫xf'(x)dx (0到2)
∫g''(x)dx (0到2)
= g'(2) - g'(0)
= 4f(2)+ 4f'(2) - 0 (g'(0)=0)
= 4 + 4(0) = 4
also
-2∫f(x)dx (0到2)
= -2(4) = -8
also
- 4∫xf'(x)dx (0到2)
let
h(x) = xf(x)
h'(x) = xf'(x) + f(x)
∫xf'(x)dx = ∫h'(x) dx -∫f(x)dx (0到2)
consider
∫h'(x) dx (0到2)
=h(2)- h(0)
=2f(2) - 0
=2(1) = 2
-∫f(x)dx (0到2)
= -4
- 4∫xf'(x)dx (0到2)
= -4(-2) = 8
∫x^2f''(x)dx = ∫g''(x)dx - 2∫f(x)dx - 4∫xf'(x)dx (0到2)
= 4 -8 + 8 = 4 (1)
I=∫x^2f''(x)dx (0到2)
let 2y = x
2dy = dx
x=0 , y=0
x=2, y=1
I=∫x^2f''(x)dx (0到2)
= ∫4y^2f''(2y)2dy (0到1)
= 8∫y^2f''(2y)dy (0到1)
= 8∫x^2f''(2x)dx (0到1)
from (1)
∫x^2f''(x)dx (0到2)
= 4
8∫x^2f''(2x)dx (0到1)
=4
∫x^2f''(2x)dx (0到1)
= 1/2 #
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询