两道高二关于椭圆的题

1.把椭圆x^2/9+y^2/4=1上每个点的横坐标不变纵坐标缩短为原来的一半,所得曲线的方程是什么?(个人答案是x^2/9+y^2/16=1,但标准答案是x^2/9+y... 1.把椭圆x^2/9+y^2/4=1上每个点的横坐标不变纵坐标缩短为原来的一半,所得曲线的方程是什么?(个人答案是x^2/9+y^2/16=1,但标准答案是x^2/9+y^2=1,缩短为原来的一半不是1/2y么,请帮我详细解答下)
2.一动圆过定点A(1,0),且与定圆(x+1)^2+y^2=16相切,则动圆圆心轨迹方程是?
请高手解答下过程。
展开
手机用户30120
2010-11-23
知道答主
回答量:15
采纳率:0%
帮助的人:0
展开全部
1.设椭圆上任一点为(x。,y。),变换后的点为(x,y),则x。=x,y。=2y
即椭圆上任一点为(x,2y)代入椭圆方程x^2/9+y^2/4=1,得x^2/9+y^2=1,因此标准答案是对的。
2.由题,定圆圆心(-1,0),半径为4,易知定点A(1,0)在定圆内,所以与定圆的关系应该是内切,由圆心距等于两半径差,故设动圆圆心为(x,y),
则根号下(x+1)^2+y^2=4-根号下(x-1)^2+y^2,
整理得,x^2/4+y^2/3=1,是一个椭圆。
zqs626290
2010-11-23 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:6166万
展开全部
(一)设点P(m,n)是所得曲线上的任一点,则由题设可知,点Q(m,2n)是原椭圆上的一点,∴应有(m²/9)+(4n²/4)=1.即(m²/9)+n²=1.∴新曲线上的任意一点P(m,n)满足(x²/9)+y²=1.∴所得曲线方程为(x²/9)+y²=1.(二)易知,定圆E的圆心E(-1,0),半径R=4.由题设可知,动圆与定圆内切,设动圆圆心为M,半径为r,易知,ME+MA=4.===>由椭圆定义可知,动圆圆心的轨迹是以点(-1,0),(1,0)为焦点,长半轴为2的椭圆,∴轨迹方程为(x²/4)+(y²/3)=1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式