y=x(x-1)(x-2)(x-3)……(x-n)的n阶导数
解析如下:
观察y=x(x-1)(x-2)(x-3)……(x-n)
的最高次数项为x^(n+1),求n阶导后成为(n+1)!x
第二高次数项为-(1+2+3+……+n)x^n,求n阶导后取系数成为-n(n+1)/2
所以y的n阶导数为(n+1)!x-n(n+1)/2
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。
几何意义
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
y=x(x-1)(x-2)(x-3)……(x-n)n阶导数为(n+1)!x-n(n+1)/2。
观察y=x(x-1)(x-2)(x-3)……(x-n)的最高次数项为x^(n+1),求n阶导后成为(n+1)!x
第二高次数项为-(1+2+3+……+n)x^n,求n阶导后取系数成为-n(n+1)/2
所以y的n阶导数为(n+1)!x-n(n+1)/2。
y=x(x-1)(x-2)(x-3)……(x-n)n阶导数为(n+1)!x-n(n+1)/2。
扩展资料:
二阶及二阶以上的导数统称为高阶导数。
从概念上讲,高阶导数计算就是连续进行一阶导数的计算。因此只需根据一阶导数计算规则逐阶求导就可以了,但从实际计算角度看,却存在两个方面的问题:
(1)一是对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。
(2)二是逐阶求导对求导次数不高时是可行的,当求导次数较高或求任意阶导数时,逐阶求导实际是行
不通的,此时需研究专门的方法。
的最高次数项为x^(n+1),求n阶导后成为(n+1)!x
第二高次数项为-(1+2+3+……+n)x^n,求n阶导后取系数成为-n(n+1)/2
所以y的n阶导数为(n+1)!x-n(n+1)/2
对于n阶导数只需知道该多项式中x的(n+1)次方和n次方项即可
易知:这两项前面系数分别为1和-n*(n+1)/2
从而y的n阶导数就等于(n+1)!x-n*[(n+1)!]/2
广告 您可能关注的内容 |