已知:如图①,在Rt△abc中,∠C=90°,AC=4cm,AC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由
已知:如图①,在Rt△abc中,∠C=90°,AC=4cm,AC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速...
已知:如图①,在Rt△abc中,∠C=90°,AC=4cm,AC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.如果运动时间为t(s)(0<t<2)回答下列问题:
(1)当t为何值时,PQ//BC?
(2)设△AQP的面积为y(cm²),求y与t的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ABC的周长和面积同时平分?如果存在,求出此时t的值,如果不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?如果存在,求出此时菱形的边长;如果不存在,说明理由. 展开
(1)当t为何值时,PQ//BC?
(2)设△AQP的面积为y(cm²),求y与t的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ABC的周长和面积同时平分?如果存在,求出此时t的值,如果不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?如果存在,求出此时菱形的边长;如果不存在,说明理由. 展开
3个回答
展开全部
(1) 当PQ//BC时,知三角形APQ相似三角形ABC,所以
有 2t :(5-t)=4:5 ,解得,t =10/ 7
(2)过P作PD垂直AC于D,则三角形APD相似三角形ABC,所以AP:AB=PD:BC
所以(5-t):5= PD:3 ,所以PD= 3(5-t)/5
所以y= 1/2 * 2t *3(5-t)/5 = -3/5 t^2 +3t
(3) 把y= 6代入y= -3/5 t^2 +3t, 、得 6 =-3/5 t^2 +3t
化简得, t^2 -5t+10=0 ,因△<0,所以此方程无解,所以这样的时刻不存在
(4)过P作PD垂直BC,若四边形PQP'C是菱形,则PD垂直平分QC,
所以AD= 4-(4-2t)/2 = 2+t PD:BC=AP:AB PD:3= (5-t):5,所以
PD=3(5-t)/5 因AD:AC=PD:BC ,所以 (2+t):4 = 3(5-t)/5 :3
解得,t= 10/9 所以PD= 7/3 , QD= 2-t =8/9 ,利用勾股定理可求PQ= 根505/ 9 (结果不一定对,但思路是对的,你再推理验证一次)
有 2t :(5-t)=4:5 ,解得,t =10/ 7
(2)过P作PD垂直AC于D,则三角形APD相似三角形ABC,所以AP:AB=PD:BC
所以(5-t):5= PD:3 ,所以PD= 3(5-t)/5
所以y= 1/2 * 2t *3(5-t)/5 = -3/5 t^2 +3t
(3) 把y= 6代入y= -3/5 t^2 +3t, 、得 6 =-3/5 t^2 +3t
化简得, t^2 -5t+10=0 ,因△<0,所以此方程无解,所以这样的时刻不存在
(4)过P作PD垂直BC,若四边形PQP'C是菱形,则PD垂直平分QC,
所以AD= 4-(4-2t)/2 = 2+t PD:BC=AP:AB PD:3= (5-t):5,所以
PD=3(5-t)/5 因AD:AC=PD:BC ,所以 (2+t):4 = 3(5-t)/5 :3
解得,t= 10/9 所以PD= 7/3 , QD= 2-t =8/9 ,利用勾股定理可求PQ= 根505/ 9 (结果不一定对,但思路是对的,你再推理验证一次)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AC=4cm,AC=3cm?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询