已知函数f(x)=x3-3ax-1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f
已知函数f(x)=x3-3ax-1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围...
已知函数f(x)=x3-3ax-1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
展开
展开全部
解析:(1)f′(x)=3x2-3a=3(x2-a),
当a<0时,对x∈R,有f′(x)>0,
当a<0时,f(x)的单调增区间为(-∞,+∞)
当a>0时,由f′(x)>0解得x<?
或x>
;
由f′(x)<0解得?
<x<
,
当a>0时,f(x)的单调增区间为(?∞,?
),(
,+∞);
f(x)的单调减区间为(?
,
).
(2)因为f(x)在x=-1处取得极大值,
所以f′(-1)=3×(-1)2-3a=0,∴a=1.
所以f(x)=x3-3x-1,f′(x)=3x2-3,
由f′(x)=0解得x1=-1,x2=1.
由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,
在x=1处取得极小值f(1)=-3.
因为直线y=m与函数y=f(x)的图象有三个不同的交点,
结合f(x)的单调性可知,m的取值范围是(-3,1).
当a<0时,对x∈R,有f′(x)>0,
当a<0时,f(x)的单调增区间为(-∞,+∞)
当a>0时,由f′(x)>0解得x<?
a |
a |
由f′(x)<0解得?
a |
a |
当a>0时,f(x)的单调增区间为(?∞,?
a |
a |
f(x)的单调减区间为(?
a |
a |
(2)因为f(x)在x=-1处取得极大值,
所以f′(-1)=3×(-1)2-3a=0,∴a=1.
所以f(x)=x3-3x-1,f′(x)=3x2-3,
由f′(x)=0解得x1=-1,x2=1.
由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,
在x=1处取得极小值f(1)=-3.
因为直线y=m与函数y=f(x)的图象有三个不同的交点,
结合f(x)的单调性可知,m的取值范围是(-3,1).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询