用拉普拉斯变换怎样求微分方程
2个回答
展开全部
根据性质L(f'(x)) = sF(s) - f(0)
推广:L(f''(x)) = sF'(s) - f'(0) = s ( sF(s) - f(0) ) - f'(0) = s^2F(s) - sf(0) - f'(0)
可继续推导出f(x)的n阶导的拉变换
代入初始条件后可得f(x)的拉变换,再进行拉式反变换即可得到原函数f(x)
扩展资料
以下是常微分方程的一些例子,其中u为未知的函数,自变量为x,c及ω均为常数。
非齐次一阶常系数线性微分方程:
齐次二阶线性微分方程:
非齐次一阶非线性微分方程:
以下是偏微分方程的一些例子,其中u为未知的函数,自变量为x及t或者是x及y。
齐次一阶线性偏微分方程:
拉普拉斯方程,是椭圆型的齐次二阶常系数线性偏微分方程:
KdV方程, 是三阶的非线性偏微分方程:
参考资料
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |