高三数学“推论三:两条平行的直线确定一个平面”怎么证明?
2015-05-19 · 知道合伙人教育行家
关注
展开全部
在两条平行直线上各找两个点,
A,B∈L1
C,D∈L2
且AB=CD
则四边形ACDB是平行四边形,
连接AD和BC,
则AD和BC相交,设交点为O
根据公理,A与C、D可以确定一个平面,
设为α,
∵AD包含于α
∴O∈α
∵C∈α
∴CO包含于α
∵B∈CO
∴B∈α
∴AB包含于α
∴AB与CD都在平面α上,
即可以确定平面α
A,B∈L1
C,D∈L2
且AB=CD
则四边形ACDB是平行四边形,
连接AD和BC,
则AD和BC相交,设交点为O
根据公理,A与C、D可以确定一个平面,
设为α,
∵AD包含于α
∴O∈α
∵C∈α
∴CO包含于α
∵B∈CO
∴B∈α
∴AB包含于α
∴AB与CD都在平面α上,
即可以确定平面α
追问
画了一个平行四边形,是否就意味着它是一个平面,然后才有了交点?
追答
不能,根据公理,只有三角形才能确定平面,
然后根据直线的无限延展性证明
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询