
设a0+a1/2+…+an/(n+1)=0 证明多项式 f(x)= a0+a1x+…+anxn 在(0,1)内至少有一个零点 20
1个回答
展开全部
令g(x) = a0x + a1/2 x² + ...+an/(n+1) x^(n+1)
则 g(0)=g(1) = 0
由罗尔中值定理有
存在c∈(0,1),使得 g'(c) = f(c) = 0
即:。。。。。
则 g(0)=g(1) = 0
由罗尔中值定理有
存在c∈(0,1),使得 g'(c) = f(c) = 0
即:。。。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询