已知函数f(x)=x²-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)/x在区间
已知函数f(x)=x²-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)/x在区间上一定()A有最小值B有最大值C是减函数D是增函数解∵函数f(...
已知函数f(x)=x²-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)/x在区间上一定( )
A有最小值 B有最大值 C是减函数 D是增函数
解∵函数f(x)=x^2-2ax+a在区间(-∞,1)上有最小值,
∴对称轴x=a<1
∵g(x)=f(x)/x=x+a/x-2a若a≤0,
则g(x)=x+a/x-2a在(0,+∞),(-∞,0)上单调递增
若0<a<1,g(x)=x+a/x-2a在(√a,+∞)上单调递增,则在(1,+∞)单调递增
综上可得g(x)=x+a/x-2a在(1,+∞)上单调递增
问题①:为什么在(√a,+∞)上增,√a哪来的
②:为什么在(√a,+∞)上单调递增,则在(1,+∞)单调递增 展开
A有最小值 B有最大值 C是减函数 D是增函数
解∵函数f(x)=x^2-2ax+a在区间(-∞,1)上有最小值,
∴对称轴x=a<1
∵g(x)=f(x)/x=x+a/x-2a若a≤0,
则g(x)=x+a/x-2a在(0,+∞),(-∞,0)上单调递增
若0<a<1,g(x)=x+a/x-2a在(√a,+∞)上单调递增,则在(1,+∞)单调递增
综上可得g(x)=x+a/x-2a在(1,+∞)上单调递增
问题①:为什么在(√a,+∞)上增,√a哪来的
②:为什么在(√a,+∞)上单调递增,则在(1,+∞)单调递增 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询