F1,F2分别是椭圆x²/4+y²=1的左右焦点,若P是该椭圆上的一动点,求向量pf1·pf2的最大值和最小
展开全部
PF1 *PF2 =(-(根号3)-x,-y)点乘((根号3)-x,-y)=x^2-3+y^2 =x^2+y^2-3 (1)
现求(1)式,在条件x²/4+y²=1 (2) 之下的最大,最小值.
由条件(2)得
PF1 *PF2 =x^2+y^2-3 =x^2+[1-(1/4)x^2]-3=(3/4)x^2-2
由于:0<=x^2<=4
故: -2<=(3/4)x^2-2<=1,
知:x=2, 或x=-2时,即在点(-2,0) (2,0) PF1 *PF2 取得最大值:1
x=0时,即在点(0,1) (0,-1) PF1 *PF2 取得最小值:-2.
现求(1)式,在条件x²/4+y²=1 (2) 之下的最大,最小值.
由条件(2)得
PF1 *PF2 =x^2+y^2-3 =x^2+[1-(1/4)x^2]-3=(3/4)x^2-2
由于:0<=x^2<=4
故: -2<=(3/4)x^2-2<=1,
知:x=2, 或x=-2时,即在点(-2,0) (2,0) PF1 *PF2 取得最大值:1
x=0时,即在点(0,1) (0,-1) PF1 *PF2 取得最小值:-2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询