函数y=sinx(1+tanxtanx/2))的最小正周期是(A)pi/2 (B)pi(C)2pi(D)3

这应该是个简单的问题。答案给的C。我认为B是对的。令f(x)=sinx(1+tanxtanx2)因为用三角函数公式可得f(x+pi)=sin(x+pi)[1+tan(x+... 这应该是个简单的问题。答案给的C。我认为B是对的。令f(x)=sinx(1+tanxtanx2 ) 因为用三角函数公式可得f(x+pi)=sin(x+pi)[1+tan(x+pi)tan(x+pi)/2]=-sinx[1-tanxcot(x/2)]=-sin[1-sinx/cosx*(1+cosx)/sinx]=sinx(1/cosx)=sinx(1+1/cosx-1)=sinx[1+(1-cosx)/cosx]=sinx[1+sinx(1-cosx)/cosxsinx]=sinx(1+tanxtanx/2)=f(x).请给看看是否正确,万分谢谢! 展开
堵丹彤0n
2010-11-25 · TA获得超过372个赞
知道小有建树答主
回答量:257
采纳率:0%
帮助的人:0
展开全部
你好,在求函数周期的时候,一定不要忘了函数的定义域啊!
注意到定义域:x与x/2都不等于pi/2+kpi
这样一来,我们就可以反过来推出B不正确了:
假设周期是pi,那么在区间[0,pi]上,显然f(0)与f(pi)不可能相等,因为
f(0)有意义,而f(pi)无定义或者说不存在。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式