2个回答
展开全部
∵(1+1/n)^(n+1)/ (1+1/(n+1))^(n+2)
= 1/(1+1/(n+1))• [(1+1/n) / (1+1/(n+1))] ^(n+1)
=(n+1) /(n+2) •[(n²+2n+1)/(n²+2n)] ^(n+1)
=(n+1) /(n+2) •[1+1/(n²+2n)] ^(n+1)
≥(n+1) /(n+2) •[1+(n+1) /(n²+2n)]
(用二项式定理展开[1+1/(n²+2n)] ^(n+1),只取其前两项)
=(n³+4n²+4n+1)/( n³+4n²+4n)>1,
∴(1+1/n)^(n+1)>=(1+1/(n+1))^(n+2)
= 1/(1+1/(n+1))• [(1+1/n) / (1+1/(n+1))] ^(n+1)
=(n+1) /(n+2) •[(n²+2n+1)/(n²+2n)] ^(n+1)
=(n+1) /(n+2) •[1+1/(n²+2n)] ^(n+1)
≥(n+1) /(n+2) •[1+(n+1) /(n²+2n)]
(用二项式定理展开[1+1/(n²+2n)] ^(n+1),只取其前两项)
=(n³+4n²+4n+1)/( n³+4n²+4n)>1,
∴(1+1/n)^(n+1)>=(1+1/(n+1))^(n+2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询