怎样判断二次函数a b c的值
1、a决定抛物线的开口方向和大小。抛物线开口向上,a>0;抛物线开口向下,当a<0。
|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
2、b和a共同决定对称轴的位置。ab>0,a与b同号,对称轴在y轴左侧即ab<0,a与b异号时,对称轴在y轴右侧。(可巧记为:左同右异)
3、常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)
已知二次函数上三个点,(x1, y1)、(x2, y2)、(x3, y3)。把三个点分别代入函数解析式y=a(x-h)²+k(a≠0,a、h、k为常数),得出一个三元一次方程组,就能解出a、b、c的值。
扩展资料
y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k.
当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;
当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;
当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;
当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;
当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
参考资料来源:百度百科-二次函数
A:图像向上,大于0,向下小于0。
B:对称轴在正半轴,与a正负形相反;对称轴在负半轴,则与a正负形相同,记住右异左同。令x=0,则y的值就是c的值,a看开口方向,向上大于0,向下小于0。
C:令X=0,则Y值就是C的值。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
扩展资料:
二次函数的图像是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。
参考资料来源:百度百科--二次函数
B:对称轴在正半轴,与a正负形相反;对称轴在负半轴,则与a正负形相同,记住右异左同. 令x=0,则y的值就是c的值,a看开口方向,向上大于0,向下小于0.
C:令X=0,则Y值就是C的值.