1个回答
展开全部
AB垂直x轴,所以A、B关于x轴对称,设A(x1,y1),则B(x1,-y1),设P(x,y)
则 x=x1,AP=(0,y-y1),BP=(0,y+y1),
由于 AP•BP=1,所以 (y-y1)(y+y1)=1,即y1²=y² -1
将A的坐标代入椭圆方程,得x1²/4+y1²/3=1,即x²/4+(y²-1)/3=1
所以 点P的轨迹方程为3x²/16+y²/4=1
则 x=x1,AP=(0,y-y1),BP=(0,y+y1),
由于 AP•BP=1,所以 (y-y1)(y+y1)=1,即y1²=y² -1
将A的坐标代入椭圆方程,得x1²/4+y1²/3=1,即x²/4+(y²-1)/3=1
所以 点P的轨迹方程为3x²/16+y²/4=1
追问
谢谢,可答案是3x^2/8+y^2/2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询