如图,已知△ABC中,以AB,AC为直角边,分别向外作等腰直角三角形ABE ACF,连结EF,过点A作AD⊥BC,垂足为D,

反向延长DA交EF于点A。1.用圆规比较EM与FM的大小。2.你能说明由(1)中所得结论的道理吗?(注:遇“等腰直角”,常构造“K”型全等三角形)写出具体过程,要说明理由... 反向延长DA交EF于点A。1.用圆规比较EM与FM的大小。2.你能说明由(1)中所得结论的道理吗?(注:遇“等腰直角”,常构造“K”型全等三角形)
写出具体过程,要说明理由
展开
hzl490502
2014-04-17 · TA获得超过3071个赞
知道小有建树答主
回答量:703
采纳率:0%
帮助的人:621万
展开全部
⑴EM=FM
⑵证明:△ABE与△ACF是等腰直角三角形
∴在△BAC与△EAF中 BA=EA,CA=FA,∠BAC=∠EAF=90°
∴△BAC≌△EAF.
∴∠ABC=∠AEF,∠ACB=∠AFE,
∵AM⊥BC,∴ ∠ABC=∠DAC, ∠ACB=∠DAB
∵∠DAC=∠EAM, ∠DAB =∠FAM,
∴∠EAM=∠AEF,∠FAM=∠AFE,
∴MA=EM.,AM=FM
∴ EM=FM
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式