高数………………

设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n!... 设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0,试用柯西中值定理证明:f(x)/x^n=f^(n)(ax)/n! (0<a<1)

要过程 Thanks
展开
1729_l
2013-11-11 · 超过12用户采纳过TA的回答
知道答主
回答量:16
采纳率:0%
帮助的人:22.6万
展开全部
令g(x) = x^n,则 g^(k)(x) = A(n,k) x^(n-k),其中A(n,k) 为排列数,即A(n, k) = n! / (n-k)!.
则g(0)=g'(0)=……=g^(n-1)(0)=0, g^(n) = n!.
f(x)/x^n = f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)]
因为 g(b1 * x) <> 0,b1在(0,1)之间,因此柯西中值定理可得
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x),a1在(0,1)之间
反复用n次柯西定理可得
[f(x) - f(0)] / [g(x) - g(0)] = f'(a1 * x) / g'(a1 * x) =...=f^(n)(an * x) / g^(n)(an * x),an 在(0, 1)之间
因为g^(n) (x) = n!
所以
f(x)/g(x) = [f(x) - f(0)] / [g(x) - g(0)] = f^(n)(an * x) / g^(n)(an * x) = f^(n) (an * x) / n!
原题得证
梅肯斯姆的掠夺
2013-11-11 · TA获得超过575个赞
知道小有建树答主
回答量:429
采纳率:0%
帮助的人:339万
展开全部
能用泰勒中值吗?我会用泰勒做
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式