已知f(x)=Asin(ωx+φ),其中ω>o 。(1)当A=ω=2,φ=兀/6,函数g(x)=f

已知f(x)=Asin(ωx+φ),其中ω>o。(1)当A=ω=2,φ=兀/6,函数g(x)=f(x)-m在[0,π/2]上有两个零点,求m的取值范围(2).当A=1,φ... 已知f(x)=Asin(ωx+φ),其中ω>o 。(1)当A=ω=2,φ=兀/6,函数g(x)=f(x)-m在 [0,π/2]上有两个零点,求m的取值范围 (2).当A=1,φ=π/6是,若函数f(x)图像的相邻两条对称轴之间的距离等于π/2.求函数f(x)的解析式,并求最小正实数n,使得函数f(x)的图像向左平移n个单位所对应的函数就是奇函数。 展开
韩增民松
2013-12-14 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2784万
展开全部
已知f(x)=Asin(ωx+φ),其中ω>o 。(1)当A=ω=2,φ=兀/6,函数g(x)=f(x)-m在[0,π/2]上有两个零点,求m的取值范围 (2).当A=1,φ=π/6是,若函数f(x)图像的相邻两条对称轴之间的距离等于π/2.求函数f(x)的解析式,并求最小正实数n,使得函数f(x)的图像向左平移n个单位所对应的函数就是奇函数。

(1)解析:由题意:函数f(x)=2sin(2x+π/6),g(x)=f(x)-m=2sin(2x+π/6)-m
∵函数f(x)初相角为第一象限角,离Y轴最近的极值点为最大值点x=π/6
g(0)=2sin(π/6)-m=1-m
g(π/6)=2-m
g(π/2)=2sin(π/6)-m=-1-m
∵g(x)=f(x)-m在区间[0,π/2]上有两个零点
只要g(0)=1-m<=0==>m>=0,g(π/6)=2-m>=0==>m<=2
∴m的取值范围为1<=m<=2;
(2)解析:由题意:函数f(x)=sin(wx+π/6)
∵函数f(x)图像的相邻两条对称轴之间的距离等于π/2
∴T/2=π/2==>T=π==>w=2
∴f(x)=sin(2x+π/6)
∵函数f(x)的图像向左平移n个单位所对应的函数就是奇函数
Y= sin(2(x+n)+π/6)=sin(2x+2n+π/6)
令2n+π/6=0==>n=-π/12
∵n>0
∴n=π-π/12=11π/12
∴最小正实数n=11π/12

另:当n=5π/12时,函数f(x)的图像向左平移5π/12个单位,所对应的函数也是奇函数,不过此时所对应的函数为y=-sin2x,但此时A=-1,不合题意;
刀剑上的霸气
2013-12-14 · TA获得超过182个赞
知道答主
回答量:49
采纳率:0%
帮助的人:18.8万
展开全部
44444444444444444444444444444444444444444
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式