把对坐标的曲线积分∫ L P(x,y)dx+Q(x,y)dy化成对弧长的曲线积分,其中L为沿上半圆
把对坐标的曲线积分∫LP(x,y)dx+Q(x,y)dy化成对弧长的曲线积分,其中L为沿上半圆周x2+y2=2x从点(0,0)到点(1,1)的弧线。...
把对坐标的曲线积分∫ L P(x,y)dx+Q(x,y)dy化成对弧长的曲线积分,其中L为沿上半圆周x 2 +y 2=2x从点(0,0)到点(1,1)的弧线。
展开
2个回答
展开全部
计算方法如下:
在数学中,曲线积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。曲线积分可分为:第一类曲线积分和第二类曲线积分。
曲线积分分为:
(1)对弧长的曲线积分 (第一类曲线积分)
(2)对坐标轴的曲线积分(第二类曲线积分)
两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds。
例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询