数学题,化简求值。
(a-2/a²+2a-a-1/a²+4a+4)÷a-4/a+2,其中a满足a²+2a-1=0....
(a-2/a²+2a-a-1/a²+4a+4)÷a-4/a+2,其中a满足a²+2a-1=0.
展开
展开全部
因为a^2+2a-1=0,
所以a^2+2a=1,
所以[(a-2)/(a^2+2a)-(a-1)/(a^2+4a+4)]/[(a-4)/(a+2)
=[(a-2)/a(a+2)-(a-1)/(a+2)^2]*[(a+2)/(a-4)]
=[(a-2)(a+2)/a(a+2)^2-a(a-1)/a(a+2)^2]*[(a+2)/(a-4)]
=[(a^2-4-a^2+a)/a(a+2)^2]*[(a+2)/(a-4)]
=[(a-4)/a(a+2)^2]*[(a+2)/(a-4)]
=1/a(a+2)
=1/(a^2+2a)
=1/1
=1.
所以a^2+2a=1,
所以[(a-2)/(a^2+2a)-(a-1)/(a^2+4a+4)]/[(a-4)/(a+2)
=[(a-2)/a(a+2)-(a-1)/(a+2)^2]*[(a+2)/(a-4)]
=[(a-2)(a+2)/a(a+2)^2-a(a-1)/a(a+2)^2]*[(a+2)/(a-4)]
=[(a^2-4-a^2+a)/a(a+2)^2]*[(a+2)/(a-4)]
=[(a-4)/a(a+2)^2]*[(a+2)/(a-4)]
=1/a(a+2)
=1/(a^2+2a)
=1/1
=1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询