=lim(x→0) [√(1+tanx)-√(1+sinx)]*[√(1+tanx)+√(1+sinx)] / [√(1+tanx)+√(1+sinx)]*x
=lim(x→0) (tanx -sinx) / [√(1+tanx)+√(1+sinx)]*x
=lim(x→0) (tanx /x) *(1-cosx) / [√(1+tanx)+√(1+sinx)]
显然x趋于0的时候,
1-cosx趋于0,而tanx /x趋于1,
而 [√(1+tanx)+√(1+sinx)]趋于常数2,
那么三者相乘,得到的极限值当然就是0
做题目对自己要有信心的啊~
lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]
=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx)]
=lim(x→0)[tanx-sinx]/2[x*ln(1+x)-x^2]
洛必达法则
=lim(x→0)[sec^2x-cosx]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)[(1-cos^3(x))/cos^2(x)]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)(1-cos^3(x))/2[x/(1+x)+ln(1+x)-2x]
洛必达法则
=lim(x→0)[3cos^2(x)*sinx]/2[1/(1+x)^2+1/(1+x)-2]
=lim(x→0) 3x/2[(-2x^2-3x)/(1+x)^2]
=lim(x→0) 3x/2(-2x^2-3x)
=lim(x→0) 3x/(-4x^2-6x)
=-1/2
扩展资料
性质
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”
3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列
收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
方不方便 给过程?
不好意思,昨天早断网,没看到追问,今天又学了一天,说一下sorry