椭圆定义,性质是什么?

 我来答
777简简单单
高粉答主

推荐于2017-09-12 · 简单分享知识,快乐学习!
777简简单单
采纳数:3588 获赞数:158903

向TA提问 私信TA
展开全部

  第一定义:椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

  第二定义:到定点(焦点)和定直线(准线)距离之比小于1的点的轨迹为椭圆。

  基本性质:

‍‍

匿名用户
2013-12-11
展开全部
定义
椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:
1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的

标准方程
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

公式
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如
L = 4a * sqrt(1-e^sin^t)的(0 - pi/2)积分, 其中a为椭圆长轴,e为离心率
椭圆的离心率公式
e=c/a
椭圆的准线方程
x=+-a^2/C
椭圆焦半径公式
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex

相关性质
由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。
例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):
将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。
设两点为F1、F2
对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2
则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定义1知:截面是一个椭圆,且以F1、F2为焦点
用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
文军Db2ac
推荐于2019-08-17 · TA获得超过2271个赞
知道答主
回答量:5
采纳率:0%
帮助的人:930
展开全部

有两种定义:

  1. 平面内与两定点、的距离的和等于常数2a的动点P的轨迹叫做椭圆。

  2. 椭圆平面内到定点(c,0)的距离和到定直线的距离之比为常数(即离心率,0<e<1)的点的轨迹是椭圆。

扩展资料:

定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。(也就是说,椭圆在点P处的切线即为∠F1PF2的外角平分线所在的直线)。

定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。

参考资料:百度百科_椭圆

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-11
展开全部
1.椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.

注意:定义中的常数用2a表示,|F1F2|用2c表示,当2a>2c>0时,轨迹为椭圆,当2a=2c时,轨迹为线段F1F2;当2a<2c时,无轨迹.这样,椭圆轨迹一定要有2a>2c这一条件.另外,应用定义来求椭圆方程或解题时,往往比较简便.

2.椭圆的标准方程

当焦点在x轴上时: + =1(a>b>0)

当焦点在y轴上时: + =1(a>b>0)

注意:(1)三个量之间的关系:a2=b2+c2

(2)由x2,y2的分母大小确定焦点在哪条坐标轴上,x2的分母大,焦点就在x轴上,y2的分母大,焦点就在y轴上.

(3)在方程Ax2+By2=C中,只有A、B、C同号时,才可能表示椭圆方程.

(4)当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-11
展开全部
平面内的点到两定点间的距离之和是一个定值,则由这些点构成的图形就是椭圆
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式