
(高中数学)绝对值不等式
设函数f(x)=|x-2a|+|x+1|,a属于R(1)当a=1时,解不等式f(x)<5(2)若存在x0属于R,使得f(x0)<3成立,求a的取值范围...
设函数f(x)=|x-2a|+|x+1|,a属于R
(1)当a=1时,解不等式f(x)<5
(2)若存在x0属于R,使得f(x0)<3成立,求a的取值范围 展开
(1)当a=1时,解不等式f(x)<5
(2)若存在x0属于R,使得f(x0)<3成立,求a的取值范围 展开
2个回答
展开全部
(1)若x>=2,则该不等式为2x-1<5,解集为2=<x<3。
若-1=<x<2,则该不等式为3<5,恒成立,解集为-1=<x<2。
若x<-1,则该不等式为1-2x<5,解集为-2<x<-1。
综上,该不等式的解集为-2<x<3。
(2)由绝对值不等式,可知|x-2a|+|x+1|>=|2a+1|,即f(x)的最小值为|2a+1|,存在x0使f(x0)<3,则|2a+1|<3,a的取值范围为(-2,1)。
若-1=<x<2,则该不等式为3<5,恒成立,解集为-1=<x<2。
若x<-1,则该不等式为1-2x<5,解集为-2<x<-1。
综上,该不等式的解集为-2<x<3。
(2)由绝对值不等式,可知|x-2a|+|x+1|>=|2a+1|,即f(x)的最小值为|2a+1|,存在x0使f(x0)<3,则|2a+1|<3,a的取值范围为(-2,1)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询