在△ABC中,角A、B、C的对边分别为a、b、c.求证:(a^2-b^2)/c^2=sin(A-B)/sinC.

掩书笑
2010-11-26 · TA获得超过9653个赞
知道大有可为答主
回答量:3340
采纳率:0%
帮助的人:6763万
展开全部
证明:
三角形ABC中
a/sinA=b/sinB=c/sinC=2R
左边=(a^2-b^2)/c^2
=(sin^2A-sin^2B)/sin^2C
=(sinA+sinB)(sinA-sinB)/sin^2C
=2sin(A+B)/2cos(A-B)/2*2cos(A+B)/2sin(A-B)/2/sin^2C
=2sin(A+B)/2cos(A+B)/2*2sin[(A-B)/2]cos[(A-B)/2/sin^2C
=sin(A+B)sin(A-B)/sin^2C
=sin(π-C)sin(A-B)/sin^2C
= =sinCsin(A-B)/sin^2C
=sin(A-B)/sinC
右边=sin(A-B)/sinC
左边=右边
所以(a^2-b^2)/c^2=sin(A-B)/sinC.

(中间使用的是正弦函数的和差化积)

参考资料: http://baike.baidu.com/view/383748.htm

earlytrain
2010-11-26 · TA获得超过2140个赞
知道小有建树答主
回答量:419
采纳率:0%
帮助的人:451万
展开全部
正弦定理知
a/c=sinA/sinC,b/c=sinB/sinC
∴(a²-b²)/c²=(sin²A-sin²B)/sin²C=(1-cos2A-1+cos2B)/2sin²C
=(cos2B-cos2A)/2sin²C=2sin(A+B)sin(A-B)/2sin²C=sin(A-B)/sinC
其中sin(A+B)=sin(π-A-B)=sinC
cos2B=cos[(A+B)-(A-B)]=cos(A+B)cos(A-B)+sin(A+B)sin(A-B)
cos2A=cos[(A+B)+(A-B)]=cos(A+B)cos(A-B)-sin(A+B)sin(A-B)
也就是和差化积
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
codjerryzzq
2010-11-26 · TA获得超过376个赞
知道小有建树答主
回答量:125
采纳率:0%
帮助的人:168万
展开全部
由正弦定理a/sinA=b/sinB=c/sinC=2R
sin(A-B)/sinC=(sinAcosB-sinBcosA)/sinC=(acosB-bcosA)/c
再由余弦定理cosB=(a^2+c^2-b^2)/2ac,cosA=(b^2+c^2-a^2)/2bc
化简后sin(A-B)/sinC=(acosB-bcosA)/c=
[(a^2+c^2-b^2)-(b^2+c^2-a^2)]/2c^2=(a^2-b^2)/c^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式