十字相乘法解一元二次方程,两个解怎么表示

我知道十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。如果二次项系数分为a与c,常数项分为b和d,一次项系数为ad+bc。那么次方程解是什么... 我知道十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 如果二次项系数分为a与c,常数项分为b和d,一次项系数为ad+bc。那么次方程解是什么?怎么用字母a、b、c、d表示 展开
 我来答
百度网友4327fcbb9b
2015-05-03 · 知道合伙人教育行家
百度网友4327fcbb9b
知道合伙人教育行家
采纳数:26423 获赞数:292071
从师范学校毕业后一直在现在单位工作

向TA提问 私信TA
展开全部
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能把二次三项式分解因式(不一定在整数范围内)。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
任何一个关于x的一元二次方程经过整理,都能化成如ax2+bx+c=0 (a≠0,且a,b,c是常数)的形式。这种形式叫一元二次方程的一般形式。
一元二次方程的解(根):
能使一元二次方程左右两边相等的未知数的值是一元二次方程的解。一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。
一元二次方程一定且最多有两个解,也有可能没有解(指实数范围内没有解,但在虚数范围内仍有两个解),那就要看判别式(△=b^2-4ac≥0)
关于x的一元二方程的两个根表示为x1,x2
例如:x^-2x-3=0, 用十字相乘法化简为
(x-3)(x+1)=0,
x-3=0, x+1=0
x1=3 , x2=-1
匿名用户
2013-11-10
展开全部
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m�0�5+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m�0�5+4m-12=(m-2)(m+6)
例2把5x�0�5+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x�0�5+6x-8=(x+2)(5x-4)
例3解方程x�0�5-8x+15=0
分析:把x�0�5-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x�0�5-5x-25=0
分析:把6x�0�5-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x�0�5-67xy+18y�0�5分解因式
分析:把14x�0�5-67xy+18y�0�5看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y�0�5可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x�0�5-67xy+18y�0�5= (2x-9y)(7x-2y)
例6 把10x�0�5-27xy-28y�0�5-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x�0�5-27xy-28y�0�5-x+25y-3
=10x�0�5-(27y+1)x -(28y�0�5-25y+3) 4y -3
7y ╳ -1
=10x�0�5-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y�0�5-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x�0�5-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x�0�5-27xy-28y�0�5-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x�0�5-27xy-28y�0�5用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x�0�5- 3ax + 2a�0�5–ab -b�0�5=0
分析:2a�0�5–ab-b�0�5可以用十字相乘法进行因式分解
解:x�0�5- 3ax + 2a�0�5–ab -b�0�5=0
x�0�5- 3ax +(2a�0�5–ab - b�0�5)=0
x�0�5- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式
交点式.
利用配方法,把二次函数的一般式变形为
Y=a[(x+b/2a)^2-(b^2-4ac)/4a^2]
应用平方差公式对右端进行因式分解,得
Y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a]
=a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a]
因一元二次方程ax^2+bx+c=0的两根分别为x1,2=(-b±√b^2-4ac)/2a
所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程ax^2+bx+c=0的两个根
因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.
在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便.
二次函数的交点式还可利用下列变形方法求得:
设方程ax^2+bx+c=0的两根分别为x1,x2
根据根与系数的关系x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),a/c=x1x2
∴y=ax^2+bx+c=a[x^2+b/a*x+c/a]
=a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 仔细看下不对的话,我也可以改正一下!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-11-10
展开全部
(ax+b)(cx+d)=acx�0�5+(ad+bc)x+bd,所以解为x1=-b/a,x2=-d/c。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-11-10
展开全部
例1 把2x^2;-7x 3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3 2×1
=5
1 3

2 1
1×1 2×3
=7
1 -1

2 -3
1×(-3) 2×(-1)
=-5
1 -3

2 -1
1×(-1) 2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2;-7x 3=(x-3)(2x-1).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式