当x大于等于0时,求f(x)=(2x)/(1+x的平方)的值域。
展开全部
解:函数f(x)=(2x)/(1+x²),∵x≥0,∴由基本不等式可知,x²+1≥2x≥0.仅当当x=1和0时,等号依次取得。两边同除以x²+1.得0≤(2x)/(1+x²)≤1,即0≤f(x)≤1.即值域为[0,1].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为1+x^2≥2x,所以(2x)/(1+x^2)≤1当且仅当x=1时取等号。x≥0所以0≤f(x)≤1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询