用mathematica求偏导

已知求的一二阶偏导数。如何用mathematica计算求解?谢谢。... 已知


的一二阶偏导数。

如何用mathematica计算求解?谢谢。
展开
 我来答
fptan
推荐于2016-12-01 · TA获得超过984个赞
知道大有可为答主
回答量:1150
采纳率:100%
帮助的人:716万
展开全部
D[f[p[x, y], w[x, y]], x, y]

Out[2]=
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] (
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "2"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]) +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] (
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]])
更多追问追答
追问

请问结果怎么看,没太懂

比如对x一阶偏导应该是

直接得出的结果太复杂没看懂……

非常感谢

追答
你复制到Mathematica中就看到清了。
D[f[p[x, y], w[x, y]], x]

\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东莞大凡
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于... 点击进入详情页
本回答由东莞大凡提供
无风虎
2014-09-22
知道答主
回答量:45
采纳率:0%
帮助的人:31万
展开全部
a计算求解?谢
追问
能不能详细一点,没看懂。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式