展开全部
D[f[p[x, y], w[x, y]], x, y]
Out[2]=
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] (
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "2"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]) +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] (
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]])
Out[2]=
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] (
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "2"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]) +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] (
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]] +
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]])
更多追问追答
追答
你复制到Mathematica中就看到清了。
D[f[p[x, y], w[x, y]], x]
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(p\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y] +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[p[x, y], w[x, y]]
\!\(\*SuperscriptBox[\(w\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, y]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
a计算求解?谢
追问
能不能详细一点,没看懂。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询