第3小题的问题2,急急急!!!!!
3个回答
展开全部
(3)①CD-CF=BC
②∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,
AB=AC
∠BAD=∠CAF
AD=AF
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD,
∵∠ABC=45°,
∴∠ABD=135°,
∴∠ACF=∠ABD=135°,
∴∠FCD=90°,
∴△FCD是直角三角形.
∵正方形ADEF的边长为2√2
且对角线AE、DF相交于点O.
∴DF=√2AD=4,O为DF中点.
∴OC=1/2DF=2.
②∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,
AB=AC
∠BAD=∠CAF
AD=AF
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD,
∵∠ABC=45°,
∴∠ABD=135°,
∴∠ACF=∠ABD=135°,
∴∠FCD=90°,
∴△FCD是直角三角形.
∵正方形ADEF的边长为2√2
且对角线AE、DF相交于点O.
∴DF=√2AD=4,O为DF中点.
∴OC=1/2DF=2.
追答
顺便给你1.,2小问给你作为参考:
证明:(1)∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
则在△BAD和△CAF中,
AB=AC
∠BAD=∠CAF
AD=AF
,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∵BD+CD=BC,
∴CF+CD=BC;
(2)CF-CD=BC;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询