设函数f(x)=cos(2x-π/3)+2sin^2(x+π/2) <1>求f(x)的最小正周期和对称轴方程
2个回答
展开全部
1、f(x)=cos2xcosπ/3+sin2xsinπ/3+1-cos(2x+π)
=cos2x*1/2+sin2x*√3/2+1+cos2x
=cos2x*3/2+sin2x*√3/2+1
=√3(cos2x*√3/2+sin2x*1/2)+1
=√3(cos2xcosπ/6+sin2xsinπ/6)+1
=√3cos(2x-π/6)+1
所以T=π
对称轴则cos(2x-π/6)=±1
2x-π/6=kπ
x=kπ/2+π/12
2、
-π/3<=x<=π/4
-5π/6<=2x-π/6<=π/3
所以最大是cos0=1
最小是cos(-5π/6)=-√3/2
所以值域是[-1/2,√3+1]
=cos2x*1/2+sin2x*√3/2+1+cos2x
=cos2x*3/2+sin2x*√3/2+1
=√3(cos2x*√3/2+sin2x*1/2)+1
=√3(cos2xcosπ/6+sin2xsinπ/6)+1
=√3cos(2x-π/6)+1
所以T=π
对称轴则cos(2x-π/6)=±1
2x-π/6=kπ
x=kπ/2+π/12
2、
-π/3<=x<=π/4
-5π/6<=2x-π/6<=π/3
所以最大是cos0=1
最小是cos(-5π/6)=-√3/2
所以值域是[-1/2,√3+1]
更多追问追答
追问
=√3cos(2x-π/6)+1?
追答
恩
采纳吧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询