这道题里伴随矩阵不等于零,为什么能得出矩阵A中有n-1阶子式不等于零呢?也可以只有一行不等于零,n
这道题里伴随矩阵不等于零,为什么能得出矩阵A中有n-1阶子式不等于零呢?也可以只有一行不等于零,n-1行都等于零啊。。...
这道题里伴随矩阵不等于零,为什么能得出矩阵A中有n-1阶子式不等于零呢?也可以只有一行不等于零,n-1行都等于零啊。。
展开
2个回答
展开全部
不是一个意思,前者是指矩阵中所有元素不都为0;后者是行列式的值不是0,是通过计算的来的一个不为0的数字。
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
简正模式
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询