证明,谢谢
1个回答
展开全部
设f(x)=ln(1+x)-x+1/2x^2,显然有f(0)=0,下面证明当x>0时,f(x)>f(0)=0
即只要能证明f(x)在x>0时为增函数即可
f '(x)=1/(1+x)-1+x=(x^2+x+1)/(1+x)-1>(x+1)/(1+x)-1=0 当x>0时
因此f(x)在x>0时为增函数,即f(x)>f(0)=0
即ln(1+x)-x+1/2x^2>0,则 ln(1+x)>x-1/2x^2
设f(x)=e^x-(1+x)
f(x)′=e^x-1
∵x>0
∴f(x)′>0
∴f(x)在(0,∽)上单调递增
∴f(x)>f(0)=1-(1+0)=0
∴e^x-(1+x)>0
∴e^x>(1+x)
∴ln(e^x)>ln(1+x)
∴x>lnI1+x)
即只要能证明f(x)在x>0时为增函数即可
f '(x)=1/(1+x)-1+x=(x^2+x+1)/(1+x)-1>(x+1)/(1+x)-1=0 当x>0时
因此f(x)在x>0时为增函数,即f(x)>f(0)=0
即ln(1+x)-x+1/2x^2>0,则 ln(1+x)>x-1/2x^2
设f(x)=e^x-(1+x)
f(x)′=e^x-1
∵x>0
∴f(x)′>0
∴f(x)在(0,∽)上单调递增
∴f(x)>f(0)=1-(1+0)=0
∴e^x-(1+x)>0
∴e^x>(1+x)
∴ln(e^x)>ln(1+x)
∴x>lnI1+x)
更多追问追答
追问
(x^2+x+1)/(1+x)-1是通过通分得来的吗
追答
是的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询