已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R),n∈N*.(Ⅰ)求q的值;(Ⅱ)若a1与a5的等差中项
已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R),n∈N*.(Ⅰ)求q的值;(Ⅱ)若a1与a5的等差中项为18,bn满足an=2log2bn,求数列{...
已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R),n∈N*.(Ⅰ)求q的值;(Ⅱ)若a1与a5的等差中项为18,bn满足an=2log2bn,求数列{bn}的前n项和.
展开
展开全部
(Ⅰ)当n=1时,a1=S1=p-2+q,
当n≥2时,an=Sn-Sn-1=pn2-2n+q-p(n-1)2+2(n-1)-q=2pn-p-2,
∵{an}是等差数列,
∴p-2+q=2p-p-2,∴q=0.
(Ⅱ)依题意a3=
,
∴a3=18.
又a3=6p-p-2,
∴6p-p-2=18,
∴p=4,∴an=8n-6,
又an=2log2bn,得bn=24n?3,
∴b1=2,
=
=24=16,
即{bn}是等比数列.
∴数列{bn}的前n项和Tn=
=
(16n?1).
当n≥2时,an=Sn-Sn-1=pn2-2n+q-p(n-1)2+2(n-1)-q=2pn-p-2,
∵{an}是等差数列,
∴p-2+q=2p-p-2,∴q=0.
(Ⅱ)依题意a3=
a1+a5 |
2 |
∴a3=18.
又a3=6p-p-2,
∴6p-p-2=18,
∴p=4,∴an=8n-6,
又an=2log2bn,得bn=24n?3,
∴b1=2,
bn+1 |
bn |
24(n+1)?3 |
24n?3 |
即{bn}是等比数列.
∴数列{bn}的前n项和Tn=
2(1?16n) |
1?16 |
2 |
15 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询