已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)若点M在抛物线上,... 已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由. 展开
 我来答
兰博rs犳挓
推荐于2016-05-13 · 超过65用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:158万
展开全部
(1)∵点C(0,4),
∴c=4,
∵点A的坐标为(4,0),
∴0=16a-8a+4,
∴a=-
1
2

∴y=-
1
2
x2+x+4;

(2)∵△ABC与△ABM的面积相等,
C点坐标为:(0,4),
∴M的纵坐标为:±4,
∴4=-
1
2
x2+x+4;
解得:x 1=0,x 2=2,
∴M点的坐标为:(2,4),
当-4=-
1
2
x2+x+4;
解得:x 1=1+
17
,x 2=1-
17

∴M点的坐标为:(1+
17
,-4)或(1-
17
,-4),
∴综上所述:M点的坐标为:(2,4)、(1+
17
,-4)或(1-
17
,-4);

(3)∵B(-2,0,),AB=6,
S△ABC=
1
2
×6×4=12,
设BQ=x,
∵EQ∥AC,
∴△BEQ∽△BCA,
∴(
BQ
AB
2=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消