(2014?汕尾)如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直
(2014?汕尾)如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线...
(2014?汕尾)如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
展开
1个回答
展开全部
(1)∵y=
x2-
x-3,
∴当y=0时,
x2-
x-3=0,
解得x1=-2,x2=4.
当x=0,y=-3.
∴A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);
(2)∵y=
x2-
x-3,
∴对称轴为直线x=
=1.
∵AD在x轴上,点M在抛物线上,
∴当△MAD的面积与△CAD的面积相等时,分两种情况:
①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,
∵C点坐标为(0,-3),
∴M点坐标为(2,-3);
②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.
当y=3时,
x2-
x-3=3,
解得x1=1+
,x2=1-
,
∴M点坐标为(1+
,3)或(1-
,3).
综上所述,所求M点坐标为(2,-3)或(1+
3 |
8 |
3 |
4 |
∴当y=0时,
3 |
8 |
3 |
4 |
解得x1=-2,x2=4.
当x=0,y=-3.
∴A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);
(2)∵y=
3 |
8 |
3 |
4 |
∴对称轴为直线x=
| ||
2×
|
∵AD在x轴上,点M在抛物线上,
∴当△MAD的面积与△CAD的面积相等时,分两种情况:
①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,
∵C点坐标为(0,-3),
∴M点坐标为(2,-3);
②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.
当y=3时,
3 |
8 |
3 |
4 |
解得x1=1+
17 |
17 |
∴M点坐标为(1+
17 |
17 |
综上所述,所求M点坐标为(2,-3)或(1+
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|