(1)如图1,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.(2)如图2,AB

(1)如图1,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.(2)如图2,AB是⊙O的直径,DF⊥AB于点D,交弦A... (1)如图1,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.(2)如图2,AB是⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.求证:FC是⊙O的切线. 展开
 我来答
巡音_130
2014-12-27 · 超过61用户采纳过TA的回答
知道答主
回答量:123
采纳率:75%
帮助的人:54.4万
展开全部
(1)证明:作CF⊥BE,垂足为F,如图1,
∵BE⊥AD,
∴∠AEB=90°,
∴∠FED=∠D=∠CFE=90°,
∠CBE+∠ABE=90°,
∠BAE+∠ABE=90°,
∴∠BAE=∠CBF,
∵四边形EFCD为矩形,
∴DE=CF.
在△BAE和△CBF中,
∠BAE=∠CBF
∠AEB=∠BFC
AB=BC

∴△BAE≌△CBF(AAS),
∴BE=CF,
∴BE=DE;

(2)证明:连接OC,如图2,
∵FC=FE,
∴∠FCE=∠FEC,
又∵∠AED=∠FEC,
∴∠FCE=∠AED.
∵OC=OA,
∴∠OCA=∠A,
∵DF⊥AB,
∴∠ADE=90°,
∴∠A+∠AED=90°,
∴∠FCE+∠OCE=90°,
∴∠FCO=90°,
即OC⊥FC,
又∵点C在⊙O上,
∴FC是⊙O的切线.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式