设总体X~N(μ,σ^2),X1,X2,...,Xn是来自总体的样本, (1)求P {  ̄ X )^2≤(σ^2)/n},

 ̄(2)若n=6,求P{(X-μ)^2≤(2(S^2))/3}题目错了,应该是...
(2)若n=6,求P{( X -μ)^2 ≤ (2(S^2))/3}
题目错了,应该是
展开
 我来答
帐号已注销
2020-06-13 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即

U ~ N(0,1),

因此,D(U)=1。

这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正态分布分布。因为问的是样本均值所以就是(X1+....+Xn)/n。

因为是简单随机样本,所以各样本间相互独立,那么就有:

E(X1+X2+……zhi+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμ

D(X1+X2+……+Xn)=

D(X1)+D(X2)+……+D(Xn)=nσ^2

扩展资料:

均值是统计中的一个重要概念。在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中位置的一个统计量。既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。

它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

参考资料来源;百度百科-样本均值

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式