用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6

用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6.... 用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6. 展开
 我来答
梦魇MWL
2014-10-29 · TA获得超过103个赞
知道答主
回答量:145
采纳率:85%
帮助的人:77.4万
展开全部
证明:(1)当n=1时,左边=12=1,右边=
1×2×3
6
=1
,等式成立.(4分)
(2)假设当n=k时,等式成立,即12+22+32+…+k2
k(k+1)(2k+1)
6
(6分)
那么,当n=k+1时,
12+22+32+…+k2+(k+1)2
k(k+1)(2k+1)
6
+(k+1)2
k(k+1)(2k+1)+6(k+1)2
6
(k+1)(2k2+7k+6)
6
(k+1)(k+2)(2k+3)
6
(k+1)[(k+1)+1][2(k+1)+1]
6

这就是说,当n=k+1时等式也成立.(10分)
根据(1)和(2),可知等式对任何n∈N*都成立.(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式