求一个积分题
1个回答
展开全部
因为:
a = dv/dt,则 dv = a*dt
那么,v = ∫a*dt = ∫sint*dt = -cost + C
当 t = 0 时,v0 = - cos0 + C = C - 1 = 0,则 C = 1
v = 1 - cost
又因为
v = dS/dt,则 dS = V*dt = (1 - cost)*dt
那么,S = ∫dS = ∫(1 - cost)*dt = ∫dt - ∫cost *dt = t - sint + C'
当 t = 0 时,S = 0 - sin0 + C' = 0,则 C' = 0
那么,S = t - sint
当 t = π 时,S = π - sinπ = π - 0 = π
a = dv/dt,则 dv = a*dt
那么,v = ∫a*dt = ∫sint*dt = -cost + C
当 t = 0 时,v0 = - cos0 + C = C - 1 = 0,则 C = 1
v = 1 - cost
又因为
v = dS/dt,则 dS = V*dt = (1 - cost)*dt
那么,S = ∫dS = ∫(1 - cost)*dt = ∫dt - ∫cost *dt = t - sint + C'
当 t = 0 时,S = 0 - sin0 + C' = 0,则 C' = 0
那么,S = t - sint
当 t = π 时,S = π - sinπ = π - 0 = π
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询