
设f(x)=x^2-4x-4定义域为[t-2,t-1]对任意t∈R,求f(x)的最小值,g(x)的解析
2个回答
展开全部
解:将f(x)的解析式配方得
f(x)=(x-2)²-8
故f(x)为开口向上、对称轴为x=2的抛物线。
①当t-1<=2,即t<=3时,f(x)在区间[t-2,t-1]上单调减少,∴f(x)的最小值在t-1达到,即
g(x)=f(t-1)=(t-1)²-4(t-1)-4=t²-6t+1
②当2<t-1<=3,即3<t<=4时,抛物线的顶点横坐标x=2∈[t-2,t-1],f(x)的最小值在x=2达到,其值为-8
∴ g(x)=-8
③当t-1>3,即t>4时,f(x)在区间[t-2,t-1]上单调增加,∴f(x)的最小值在t-2达到,即
g(x)=f(t-2)=(t-2)²-4(t-2)-4=t²-8t+8
综上述:
当t∈(-∞,3]时,g(x)=t²-6t+1
当t∈(3,4]时, g(x)=-8
当t∈(4,+∞)时,g(x)=t²-8t+8
f(x)=(x-2)²-8
故f(x)为开口向上、对称轴为x=2的抛物线。
①当t-1<=2,即t<=3时,f(x)在区间[t-2,t-1]上单调减少,∴f(x)的最小值在t-1达到,即
g(x)=f(t-1)=(t-1)²-4(t-1)-4=t²-6t+1
②当2<t-1<=3,即3<t<=4时,抛物线的顶点横坐标x=2∈[t-2,t-1],f(x)的最小值在x=2达到,其值为-8
∴ g(x)=-8
③当t-1>3,即t>4时,f(x)在区间[t-2,t-1]上单调增加,∴f(x)的最小值在t-2达到,即
g(x)=f(t-2)=(t-2)²-4(t-2)-4=t²-8t+8
综上述:
当t∈(-∞,3]时,g(x)=t²-6t+1
当t∈(3,4]时, g(x)=-8
当t∈(4,+∞)时,g(x)=t²-8t+8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询