如图,在矩形ABCD中,AB=33,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在A
如图,在矩形ABCD中,AB=33,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上(1)求证:BC′⊥面ADC′;(2)求二...
如图,在矩形ABCD中,AB=33,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上(1)求证:BC′⊥面ADC′;(2)求二面角A-BC′-D的正弦值.
展开
1个回答
展开全部
(1)由题意可得,C′O⊥平面ABD,
∵DA?平面ABD,
∴C′O⊥DA,
由题意可知,∠DAB=90°,即DA⊥AB,且C′O∩AB=O,
∴DA⊥平面C′AB,又BC′?平面C′AB,
∴BC′⊥DA,
又∠BC′D=∠BCD=90°,即BC′⊥C′D,且C′D∩DA=D,
∴BC′⊥平面ADC′;
(2)根据(1)可知,BC′⊥平面ADC′,
∵AC′?平面ADC′,DC′?平面ADC′,
∴BC′⊥AC′,BC′⊥DC′,
∴∠AC′D即为二面角A-BC′-D的平面角,
又由(1)知,DA⊥平面C′AB,
∵AC′?平面C′AB,
∴DA⊥AC′,即△DAC′为直角三角形,
在直角三角形DAC′中,DA=BC=3,DC′=DC=AB=3
,
∴sin∠AC′D=
=
=
,
故二面角A-BC′-D的正弦值为
.
∵DA?平面ABD,
∴C′O⊥DA,
由题意可知,∠DAB=90°,即DA⊥AB,且C′O∩AB=O,
∴DA⊥平面C′AB,又BC′?平面C′AB,
∴BC′⊥DA,
又∠BC′D=∠BCD=90°,即BC′⊥C′D,且C′D∩DA=D,
∴BC′⊥平面ADC′;
(2)根据(1)可知,BC′⊥平面ADC′,
∵AC′?平面ADC′,DC′?平面ADC′,
∴BC′⊥AC′,BC′⊥DC′,
∴∠AC′D即为二面角A-BC′-D的平面角,
又由(1)知,DA⊥平面C′AB,
∵AC′?平面C′AB,
∴DA⊥AC′,即△DAC′为直角三角形,
在直角三角形DAC′中,DA=BC=3,DC′=DC=AB=3
3 |
∴sin∠AC′D=
DA |
DC′ |
3 | ||
3
|
| ||
3 |
故二面角A-BC′-D的正弦值为
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询