已知△ABC中,(b+a)(sinB-sinA)=asinB,又cos2C+cosC=1-cos(A-B).(I)试判断△ABC的形状;(II)
已知△ABC中,(b+a)(sinB-sinA)=asinB,又cos2C+cosC=1-cos(A-B).(I)试判断△ABC的形状;(II)求cosC的值....
已知△ABC中,(b+a)(sinB-sinA)=asinB,又cos2C+cosC=1-cos(A-B).(I)试判断△ABC的形状;(II)求cosC的值.
展开
1个回答
展开全部
(Ⅰ)由cos2C+cosC=1-cos(A-B)
得cosC+cos(A-B)=1-cos2C,cos(A-B)-cos(A+B)=2sin2C,
即sinAsinB=sin2C,根据正弦定理,ab=c2,①,
又由正弦定理及(b+a)(sinB-sinA)=asinB可知b2-a2=ab,②,由①②得b2=a2+c2,
所以△ABC是直角三角形,且B=90°;
(Ⅱ)∵A+C=90°,∴sin2C=sinAsinB=sinA=cosC,
从而cos2C+cosC-1=0,解得cosC=
或cosC=
(舍去),
即cosC=
.
得cosC+cos(A-B)=1-cos2C,cos(A-B)-cos(A+B)=2sin2C,
即sinAsinB=sin2C,根据正弦定理,ab=c2,①,
又由正弦定理及(b+a)(sinB-sinA)=asinB可知b2-a2=ab,②,由①②得b2=a2+c2,
所以△ABC是直角三角形,且B=90°;
(Ⅱ)∵A+C=90°,∴sin2C=sinAsinB=sinA=cosC,
从而cos2C+cosC-1=0,解得cosC=
?1+
| ||
2 |
?1?
| ||
2 |
即cosC=
?1+
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询