如图,设F是椭圆:C:x2a2+y2b2=1(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为
如图,设F是椭圆:C:x2a2+y2b2=1(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|...
如图,设F是椭圆:C:x2a2+y2b2=1(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|.(1)求椭圆C的标准方程;(2)若过点P的直线与椭圆相交于不同两点A,B,求证:∠AFM=∠BFN;(3)(理)求三角形ABF面积的最大值.
展开
展开全部
(1)∵线段MN为椭圆的长轴,且|MN|=8,∴a=4
∵|PM|=2|MF|,
∴
-a=2(a-c)
∴a2-ac=2ac-2c2,
∴2e2-3e+1=0,
解得e=
或e=1(舍去)
∴c=2,b2=a2-c2=12,
∴椭圆的标准方程为
+
=1.
(2)当AB的斜率为0时,显然∠AFM=∠BFM=0,满足题意.
当AB方程为x=my-8,代入椭圆方程整理得
(3m2+4)y2-48my+144=0,
设A(x1,y1),B(x2,y2),
则y1+y2=
,y1y2=
,
∴KAF+KBF=
+
=
+
=
=
=0
∴KAF+KBF=0,从而∠AFM=∠BFN 综上可知,恒有∠AFM=∠BFN.
(3)(理)∵P(-8,0),F(-2,0),∴|PF|=6,
∴|y2-y1|=
∵|PM|=2|MF|,
∴
a2 |
c |
∴a2-ac=2ac-2c2,
∴2e2-3e+1=0,
解得e=
1 |
2 |
∴c=2,b2=a2-c2=12,
∴椭圆的标准方程为
x2 |
16 |
y2 |
12 |
(2)当AB的斜率为0时,显然∠AFM=∠BFM=0,满足题意.
当AB方程为x=my-8,代入椭圆方程整理得
(3m2+4)y2-48my+144=0,
设A(x1,y1),B(x2,y2),
则y1+y2=
48m |
3m2+4 |
144 |
3m2+4 |
∴KAF+KBF=
y1 |
x1+2 |
y2 |
x2+2 |
y1 |
my1?6 |
y2 |
my2?6 |
=
2my1y2?6(y1+y2) | ||
(my1?6)(m
|
=
| ||||
(my1?6)(my2?6) |
∴KAF+KBF=0,从而∠AFM=∠BFN 综上可知,恒有∠AFM=∠BFN.
(3)(理)∵P(-8,0),F(-2,0),∴|PF|=6,
∴|y2-y1|=
(y1+y2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|