已知函数f(x)=mx3-3(m+1)x2+(3m+6)x+1,其中m∈R,m<0,(1)若m=-2,求y=f(x)在(2,-3)处的
已知函数f(x)=mx3-3(m+1)x2+(3m+6)x+1,其中m∈R,m<0,(1)若m=-2,求y=f(x)在(2,-3)处的切线方程;(2)当x∈[-1,1]时...
已知函数f(x)=mx3-3(m+1)x2+(3m+6)x+1,其中m∈R,m<0,(1)若m=-2,求y=f(x)在(2,-3)处的切线方程;(2)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.
展开
展开全部
(1)m=-2时,f(x)=-2x3+3x2+1,
∴f′(x)=-6x2+6x,
∴y=f(x)在(2,-3)处的切线方程的斜率k=f′(2)=-12,
y=f(x)在(2,-3)处的切线方程为y+3=-12(x-2),
即12x+y-21=0.…5分
(2)∵f(x)=mx3-3(m+1)x2+(3m+6)x+1,其中m∈R,m<0,
∴f′(x)=3mx2-6(m+1)x+3m+6,
∵当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,
∴f′(x)>3m,即mx2-2(m+1)x+2>0.…6分
又m<0
所以x2?
(m+1)x+
<0
即x2?
(m+1)x+
<0,x∈[?1,1]
①设g(x)=x2?2(1+
)x+
,
其函数开口向上,由题意知①式恒成立,…8分
所以
?
,
解之得?
<m,又m<0,…11分
所以?
<m<0,
即m的取值范围为(?
,0).…12分
∴f′(x)=-6x2+6x,
∴y=f(x)在(2,-3)处的切线方程的斜率k=f′(2)=-12,
y=f(x)在(2,-3)处的切线方程为y+3=-12(x-2),
即12x+y-21=0.…5分
(2)∵f(x)=mx3-3(m+1)x2+(3m+6)x+1,其中m∈R,m<0,
∴f′(x)=3mx2-6(m+1)x+3m+6,
∵当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,
∴f′(x)>3m,即mx2-2(m+1)x+2>0.…6分
又m<0
所以x2?
2 |
m |
2 |
m |
即x2?
2 |
m |
2 |
m |
①设g(x)=x2?2(1+
1 |
m |
2 |
m |
其函数开口向上,由题意知①式恒成立,…8分
所以
|
|
解之得?
4 |
3 |
所以?
4 |
3 |
即m的取值范围为(?
4 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询