(2012?浙江模拟)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD

(2012?浙江模拟)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA... (2012?浙江模拟)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12AD=1,CD=3.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值. 展开
 我来答
中野梓酱喌
2014-09-17 · 超过66用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:145万
展开全部
(本小题满分15分)
(Ⅰ)证法一:∵AD∥BC,BC=
1
2
AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD∥BQ.
∵∠ADC=90°∴∠AQB=90°,即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ?平面PQB,∴平面PQB⊥平面PAD. …(9分)
证法二:AD∥BC,BC=
1
2
AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD∥BQ.
∵∠ADC=90°∴∠AQB=90°.
∵PA=PD,∴PQ⊥AD.
∵PQ∩BQ=Q,∴AD⊥平面PBQ.
∵AD?平面PAD,∴平面PQB⊥平面PAD.…(9分)
解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如图,以Q为原点建立空间直角坐标系.
则平面BQC的法向量为
n
=(0,0,1)

Q(0,0,0),P(0,0,
3
)
B(0,
3
,0)
C(?1,
3
,0)

设M(x,y,z),则
PM
=(x,y,z?
3
)
MC
=(?1?x,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消