已知等差数列{an}的前n项和为Sn,且满足a2+a7+a8+a11=48,a3:a11=1:2,则limn→∞nanS2n=1212
已知等差数列{an}的前n项和为Sn,且满足a2+a7+a8+a11=48,a3:a11=1:2,则limn→∞nanS2n=1212....
已知等差数列{an}的前n项和为Sn,且满足a2+a7+a8+a11=48,a3:a11=1:2,则limn→∞nanS2n=1212.
展开
1个回答
展开全部
由等差数列的性质式可得,a2+a7+a8+a11=a6+2a7+a8=4a7=48
∴a7=12
∵a3:a11=1:2,a3+a11=2a7=24
∴a3=8,a11=16
∴d=
=1,a1=6
∴an=a3+(n-3)×1=n+5,S2n=2n×6+
=2n2+11n
∴
=
=
=
=
故答案为:
∴a7=12
∵a3:a11=1:2,a3+a11=2a7=24
∴a3=8,a11=16
∴d=
a11? a3 |
11?3 |
∴an=a3+(n-3)×1=n+5,S2n=2n×6+
2n(2n?1) |
2 |
∴
lim |
n→∞ |
nan |
S2n |
lim |
n→∞ |
n(n+5) |
n(2n+11) |
lim |
n→∞ |
n+5 |
2n+11 |
lim |
n→∞ |
1+
| ||
2+
|
1 |
2 |
故答案为:
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询