已知数列{an}是等比数列,且a1+a2+a3=-6,且a1?a2?a3=64,(|q|>1)(1)求{an}的通项公式;(2)令bn=
已知数列{an}是等比数列,且a1+a2+a3=-6,且a1?a2?a3=64,(|q|>1)(1)求{an}的通项公式;(2)令bn=(2n+1)?an,求数列{bn}...
已知数列{an}是等比数列,且a1+a2+a3=-6,且a1?a2?a3=64,(|q|>1)(1)求{an}的通项公式;(2)令bn=(2n+1)?an,求数列{bn}的前n项和的公式.
展开
展开全部
(1)设数列{an}的公比为q,则有
a1(1+q+q2)=-6 ①
a13×q3=64 ②
由②式可得a1=
代入①式
可得q=-2或者-
(|q|>1故舍去)
所以求得a1=-2.
故{an}的通项公式an=a1qn-1=(-2)n.
(2)bn=(2n+1)?an=(2n+1)(-2)n
Sn=b1+b2+b3+…+bn=3×(-2)+5×(-2)2+7×(-2)3+9×(-2)2+…+(2n+1)(-2)n …③
(-2)×Sn=3×(-2)2+5×(-2)3+7×(-2)4+9×(-2)5+…+(2n+1)(-2)n+1…④
③-④得
3Sn=3×(-2)+2×(-2)2+2×(-2)3+2×(-2)4+2×(-2)5+…+2×(-2)n-(2n+1)(-2)n+1
=-6+2×[(-2)2+(-2)3+(-2)4+(-2)5+…(-2)n]-(2n+1)(-2)n+1
=-6+2×
-(2n+1)(-2)n+1
=-
-
-
=?
?
故Sn=?
?
.
a1(1+q+q2)=-6 ①
a13×q3=64 ②
由②式可得a1=
4 |
q |
可得q=-2或者-
1 |
2 |
所以求得a1=-2.
故{an}的通项公式an=a1qn-1=(-2)n.
(2)bn=(2n+1)?an=(2n+1)(-2)n
Sn=b1+b2+b3+…+bn=3×(-2)+5×(-2)2+7×(-2)3+9×(-2)2+…+(2n+1)(-2)n …③
(-2)×Sn=3×(-2)2+5×(-2)3+7×(-2)4+9×(-2)5+…+(2n+1)(-2)n+1…④
③-④得
3Sn=3×(-2)+2×(-2)2+2×(-2)3+2×(-2)4+2×(-2)5+…+2×(-2)n-(2n+1)(-2)n+1
=-6+2×[(-2)2+(-2)3+(-2)4+(-2)5+…(-2)n]-(2n+1)(-2)n+1
=-6+2×
4(1?(?2)n?1) |
1+2 |
=-
10 |
9 |
8(?2)n?1 |
9 |
(2n+1)(?2)n+1 |
3 |
=?
10 |
9 |
(6n+5)(?2)n+1 |
9 |
故Sn=?
10 |
9 |
(6n+5)(?2)n+1 |
9 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询