如图,在正方形ABCD中,P是BC上的一点,且BP=3PC,Q是CD的中点 1)求证△ADQ∽△QCP 2)求证AQ⊥PQ

答得多
2010-12-10 · TA获得超过12.6万个赞
知道大有可为答主
回答量:1.1万
采纳率:100%
帮助的人:8395万
展开全部
不妨设正方形ABCD的边长为 4 ,则有:AD = 4 ,DQ = 2 ,CP = 1 。
1)
在△ADQ和△QCP中,∠ADQ = 90°= ∠QCP ,AD/CQ = 2 = DQ/CP ,
所以,△ADQ ∽ △QCP 。
2)
因为,△ADQ ∽ △QCP ,可得:∠AQD = ∠QPC ,
所以,∠AQP = 180°-∠AQD-∠PQC = 180°-∠QPC-∠PQC = ∠PCQ = 90° ,
即有:AQ⊥PQ 。
信封兔子
2012-05-03 · TA获得超过315个赞
知道答主
回答量:32
采纳率:0%
帮助的人:13.9万
展开全部
在△ADQ和△QCP中,∠ADQ = 90°= ∠QCP ,AD/CQ = 2 = DQ/CP ,
所以,△ADQ ∽ △QCP 。
2)
因为,△ADQ ∽ △QCP ,可得:∠AQD = ∠QPC ,
所以,∠AQP = 180°-∠AQD-∠PQC = 180°-∠QPC-∠PQC = ∠PCQ = 90° ,
即有:AQ⊥PQ 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2010-12-10
展开全部
AQ⊥PQ
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式