如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB

如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间... 如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间的数量关系,并加以证明;(3)求sin∠OPA的值. 展开
 我来答
手机用户24715
推荐于2016-04-26 · 超过55用户采纳过TA的回答
知道答主
回答量:92
采纳率:0%
帮助的人:102万
展开全部
解答:(1)证明:连接OB.
∵BC∥OP,
∴∠BCO=∠POA,∠CBO=∠POB,
∴∠POA=∠POB,(1分)
又∵PO=PO,OB=OA,
∴△POB≌△POA.                                            (3分)
∴∠PBO=∠PAO=90°.
∴PB是⊙O的切线.                                           (4分)

(2)解:2PO=3BC.(写PO=
3
2
BC亦可)
证明:∵△POB≌△POA,∴PB=PA.                             (5分)
∵BD=2PA,∴BD=2PB.
∵BC∥PO,∴△DBC∽△DPO.                                   (6分)
BC
PO
BD
PD
2
3

∴2PO=3BC.                                                 (7分)

(3)解:∵CB∥OP,
∴△DBC∽△DPO,
DC
DO
BD
PD
2
3

即DC=
2
3
OD.
∴OC=
1
3
OD,
∴DC=2OC.                                                (8分)
设OA=x,PA=y.则OD=3x,OB=x,BD=2y.
在Rt△OBD中,由勾股定理得(3x)2=x2+(2y)2,即2x2=y2
∵x>0,y>0,
∴y=
2
x,OP=
x2+y2
=
3
x.                             (9分)
∴sin∠OPA=
OA
OP
=
x
3
x
=
1
3
=
3
3
.                           (10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式