如图,在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-

如图,在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-3)2=0,c=2b-a;(1)求a,b,c的值;(... 如图,在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-3) 2 =0,c=2b-a;(1)求a,b,c的值;(2)如果再第二象限内有一点P(m,1),请用含m的式子表示四边形ABOP的面积,若四边形ABOP的面积与△ABC的面积相等,请求出点P的坐标;(3)若B,A两点分别在x轴,y轴的正半轴上运动,设∠BAO的邻补角的平分线和∠ABO的邻补角的平分线相交于第一象限内一点Q,那么,点A,B在运动的过程中,∠Q的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由. 展开
 我来答
xezhxeltc90324
推荐于2016-11-09 · TA获得超过408个赞
知道小有建树答主
回答量:287
采纳率:96%
帮助的人:59.3万
展开全部
(1)∵|a-2|+(b-3) 2 =0,
∴a-2=0,b-3=0,
即a=2,b=3,
又∵c=2b-a,
∴c=2×3-2=4;

(2)由题意:S △ABC =
1
2
BC×b
=
1
2
×4×3
=6,
S 四边形ABOP =
1
2
×AO×|m|+
1
2
×AO×|c|
=
1
2
×2×|m|+
1
2
×2×3
=|m|+3,
由题意S 四边形ABOP =S △ABC
∴|m|+3=6,
即m=±3,
∵点P在第二象限,
∴点P(-3,1);

(3)∠AQB为定值.
证明:∵2∠BAQ=∠AOB+∠ABO,2∠ABQ=∠AOB+∠OAB,
∴2(∠BAQ+∠ABQ)=2∠AOB+∠ABO+∠OAB,
∠BAQ+∠ABQ=∠AOB+
180°-∠AOB
2
=90°+
1
2
∠AOB

∵∠AOB大小为定值,
∴∠BAQ+∠ABQ的大小为定值,
∴∠AQB=180°-(∠BAQ+∠ABQ),
故∠AQB为定值.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式