(2012?丰台区二模)已知:如图,在平面直角坐标系xOy中,一次函数y=-x的图象与反比例函数y=kx的图象交
(2012?丰台区二模)已知:如图,在平面直角坐标系xOy中,一次函数y=-x的图象与反比例函数y=kx的图象交于A、B两点.(1)求k的值;(2)如果点P在y轴上,且满...
(2012?丰台区二模)已知:如图,在平面直角坐标系xOy中,一次函数y=-x的图象与反比例函数y=kx的图象交于A、B两点.(1)求k的值;(2)如果点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,直接写出点P的坐标.
展开
1个回答
展开全部
(1)∵一次函数y=-x的图象与反比例函数y=
的图象交于A、B两点,
根据图象可得出A点横坐标为-1,代入一次函数解析式,
∴y=-(-1)=1,
∴A点坐标为:(-1,1),
∵反比例函数y=
的图象经过点A(-1,1),
∴k=-1×1=-1;
(2)作BD⊥y轴,AC⊥y轴,如图,设P点坐标为(0,y),
∵点A与B点关于原点对称,
∴B点坐标为(1,-1),
∴AB2=22+22=8,PB2=PD2+BD2=(y+1)2+12,PA2=PC2+AC2=(y-1)2+12,
分类:当△APB是以AB为斜边的直角三角形,则PB2+PA2=AB2,
∴PB2+PA2=AB2,即(y+1)2+12+(y-1)2+12=8,解得y=±
;
当△APB是以PB为斜边的直角三角形,
∴AB2+PA2=PB2,即(y+1)2+12=(y-1)2+12+8,解得y=2;
当△APB是以PA为斜边的直角三角形,
∴AB2+PB2=PA2,即(y-1)2+12=(y+1)2+12+8,解得y=-2;
∴P点坐标为(0,
)、(0,-
)、(0,2)、(0,-2).
k |
x |
根据图象可得出A点横坐标为-1,代入一次函数解析式,
∴y=-(-1)=1,
∴A点坐标为:(-1,1),
∵反比例函数y=
k |
x |
∴k=-1×1=-1;
(2)作BD⊥y轴,AC⊥y轴,如图,设P点坐标为(0,y),
∵点A与B点关于原点对称,
∴B点坐标为(1,-1),
∴AB2=22+22=8,PB2=PD2+BD2=(y+1)2+12,PA2=PC2+AC2=(y-1)2+12,
分类:当△APB是以AB为斜边的直角三角形,则PB2+PA2=AB2,
∴PB2+PA2=AB2,即(y+1)2+12+(y-1)2+12=8,解得y=±
2 |
当△APB是以PB为斜边的直角三角形,
∴AB2+PA2=PB2,即(y+1)2+12=(y-1)2+12+8,解得y=2;
当△APB是以PA为斜边的直角三角形,
∴AB2+PB2=PA2,即(y-1)2+12=(y+1)2+12+8,解得y=-2;
∴P点坐标为(0,
2 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询