已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)=f′(x0),则称x0是f(x)的一个“巧值点”,

已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)=f′(x0),则称x0是f(x)的一个“巧值点”,下列函数中,有“巧值点”的函数的个数是()①f(x)=x... 已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)=f′(x0),则称x0是f(x)的一个“巧值点”,下列函数中,有“巧值点”的函数的个数是(  )①f(x)=x2,②f(x)=e-x,③f(x)=lnx,④f(x)=tanx,⑤f(x)=x+1x.A.2B.3C.4D.5 展开
 我来答
一半情侣装A5
推荐于2016-12-01
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
①中的函数f(x)=x2,f′(x)=2x.要使f(x)=f′(x),则x2=2x,解得x=0或2,可见函数有巧值点;
对于②中的函数,要使f(x)=f′(x),则e-x=-e-x,由对任意的x,有e-x>0,可知方程无解,原函数没有巧值点;
对于③中的函数,要使f(x)=f′(x),则lnx=
1
x


由函数f(x)=lnx与y=
1
x
的图象知,它们有交点,因此方程有解,原函数有巧值点;
对于④中的函数,要使f(x)=f′(x),则tanx=
1
cos2x
,即sinxcosx=1,sin2x=2,显然无解,原函数没有巧值点;
对于⑤中的函数,要使f(x)=f′(x),则x+
1
x
=1-
1
x2
,即x3-x2+x+1=0,
设函数g(x)=x3-x2+x+1,g′(x)=3x2+2x+1>0且g(-1)<0,g(0)>0,
显然函数g(x)在(-1,0)上有零点,原函数有巧值点.
故有“巧值点”的函数为①③⑤,共3个.
故选:B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式